Sunday, December 25, 2022

Time travel


Time travel

[ Is it time travel is possible ] ?


Time travel is the concept of movement between certain points in timeanalogous to movement between different points in space by an object or a person, typically with the use of a hypothetical device known as a time machine. Time travel is a widely recognized concept in philosophy and fiction, particularly science fiction. The idea of a time machine was popularized by H. G. Wells' 1895 novel The Time Machine.[1]

The first page of The Time Machine published by Heinemann

It is in uncertain. The Chinese novel Supplement to the Journey to the West (c. 1640) by Dong Yue features magical mirrors and jade gateways that connect various points in time. The protagonist Sun Wukong travels back in time to the "World of the Ancients" (Qin Dynasty) to retrieve a magical bell and then travels forward to the "World of the Future" (Song Dynasty) to find an emperor who has been exiled in time. However, the time travel takes place inside an illusory dream world created by the villain to entrap and distract him.[9] Samuel Madden's Memoirs of the Twentieth Century (1733) is a series of letters from British ambassadors in 1997 and 1998 to diplomats in the past, conveying the political and religious conditions of the future.[10]: 95–96  Because the narrator receives these letters from his guardian angel, Paul Alkon suggests in his book Origins of Futuristic Fiction that "the first time-traveler in English literature is a guardian angel".[10]: 85  Madden does not explain how the angel obtains these documents, but Alkon asserts that Madden "deserves recognition as the first to toy with the rich idea of time-travel in the form of an artifact sent backward from the future to be discovered in the present".[10]: 95–96  In the science fiction anthology Far Boundaries (1951), editor August Derleth claims that an early short story about time travel is An Anachronism; or, Missing One's Coach, written for the Dublin Literary Magazine[11] by an anonymous author in the June 1838 issue.[12]: 3  While the narrator waits under a tree for a coach to take him out of Newcastle upon Tyne, he is transported back in time over a thousand years. He encounters the Venerable Bede in a monastery and explains to him the developments of the coming centuries. However, the story never makes it clear whether these events are real or a dream.[12]: 11–38  Another early work about time travel is The Forebears of Kalimeros: Alexander, son of Philip of Macedon by Alexander Veltman published in 1836.[13]

Mr. and Mrs. Fezziwig dance in a vision shown to Scrooge by the Ghost of Christmas Past.

Charles DickensA Christmas Carol (1843) has early depictions of mystical time travel in both directions, as the protagonist, Ebenezer Scrooge, is transported to Christmases past and future. Other stories employ the same template, where a character naturally goes to sleep, and upon waking up finds themself in a different time.[14] A clearer example of backward time travel is found in the popular 1861 book Paris avant les hommes (Paris before Men) by the French botanist and geologist Pierre Boitard, published posthumously. In this story, the protagonist is transported to the prehistoric past by the magic of a "lame demon" (a French pun on Boitard's name), where he encounters a Plesiosaur and an apelike ancestor and is able to interact with ancient creatures.[15] Edward Everett Hale's "Hands Off" (1881)[16] tells the story of an unnamed being, possibly the soul of a person who has recently died, who interferes with ancient Egyptian history by preventing Joseph's enslavement. This may have been the first story to feature an alternate history created as a result of time travel.[17]: 54 

Early time machines

One of the first stories to feature time travel by means of a machine is "The Clock that Went Backward" by Edward Page Mitchell,[18] which appeared in the New York Sun in 1881. However, the mechanism borders on fantasy. An unusual clock, when wound, runs backwards and transports people nearby back in time. The author does not explain the origin or properties of the clock.[17]: 55  Enrique Gaspar y Rimbau's El Anacronópete (1887) may have been the first story to feature a vessel engineered to travel through time.[19][20] Andrew Sawyer has commented that the story "does seem to be the first literary description of a time machine noted so far", adding that "Edward Page Mitchell's story The Clock That Went Backward (1881) is usually described as the first time-machine story, but I'm not sure that a clock quite counts".[21] H. G. WellsThe Time Machine (1895) popularized the concept of time travel by mechanical means.[22]

Time travel in physics

Some theories, most notably special and general relativity, suggest that suitable geometries of spacetime or specific types of motion in space might allow time travel into the past and future if these geometries or motions were possible.[23]: 499  In technical papers, physicists discuss the possibility of closed timelike curves, which are world lines that form closed loops in spacetime, allowing objects to return to their own past. There are known to be solutions to the equations of general relativity that describe spacetimes which contain closed timelike curves, such as Gödel spacetime, but the physical plausibility of these solutions is uncertain.

Many in the scientific community believe that backward time travel is highly unlikely. Any theory that would allow time travel would introduce potential problems of causality.[24] The classic example of a problem involving causality is the "grandfather paradox," which involves travelling to the past and intervening in the conception of one's ancestors (causing the death of an ancestor before said conception being frequently cited). Some physicists, such as Novikov and Deutsch, suggested that these sorts of temporal paradoxes can be avoided through the Novikov self-consistency principle or a variation of the many-worlds interpretation with interacting worlds.[25]

General relativity

Time travel to the past is theoretically possible in certain general relativity spacetime geometries that permit traveling faster than the speed of light, such as cosmic strings, traversable wormholes, and Alcubierre drives.[26][27]: 33–130  The theory of general relativity does suggest a scientific basis for the possibility of backward time travel in certain unusual scenarios, although arguments from semiclassical gravity suggest that when quantum effects are incorporated into general relativity, these loopholes may be closed.[28] These semiclassical arguments led Stephen Hawking to formulate the chronology protection conjecture, suggesting that the fundamental laws of nature prevent time travel,[29] but physicists cannot come to a definite judgment on the issue without a theory of quantum gravity to join quantum mechanics and general relativity into a completely unified theory.[30][31]: 150 

Different spacetime geometries

The theory of general relativity describes the universe under a system of field equations that determine the metric, or distance function, of spacetime. There exist exact solutions to these equations that include closed time-like curves, which are world lines that intersect themselves; some point in the causal future of the world line is also in its causal past, a situation that can be described as time travel. Such a solution was first proposed by Kurt Gödel, a solution known as the Gödel metric, but his (and others') solution requires the universe to have physical characteristics that it does not appear to have,[23]: 499  such as rotation and lack of Hubble expansion. Whether general relativity forbids closed time-like curves for all realistic conditions is still being researched.[32]

Wormholes

Wormholes are a hypothetical warped spacetime permitted by the Einstein field equations of general relativity.[33]: 100  A proposed time-travel machine using a traversable wormhole would hypothetically work in the following way: One end of the wormhole is accelerated to some significant fraction of the speed of light, perhaps with some advanced propulsion system, and then brought back to the point of origin. Alternatively, another way is to take one entrance of the wormhole and move it to within the gravitational field of an object that has higher gravity than the other entrance, and then return it to a position near the other entrance. For both these methods, time dilation causes the end of the wormhole that has been moved to have aged less, or become "younger", than the stationary end as seen by an external observer; however, time connects differently through the wormhole than outside it, so that synchronized clocks at either end of the wormhole will always remain synchronized as seen by an observer passing through the wormhole, no matter how the two ends move around.[23]: 502  This means that an observer entering the "younger" end would exit the "older" end at a time when it was the same age as the "younger" end, effectively going back in time as seen by an observer from the outside. One significant limitation of such a time machine is that it is only possible to go as far back in time as the initial creation of the machine;[23]: 503  in essence, it is more of a path through time than it is a device that itself moves through time, and it would not allow the technology itself to be moved backward in time.

According to current theories on the nature of wormholes, construction of a traversable wormhole would require the existence of a substance with negative energy, often referred to as "exotic matter". More technically, the wormhole spacetime requires a distribution of energy that violates various energy conditions, such as the null energy condition along with the weak, strong, and dominant energy conditions. However, it is known that quantum effects can lead to small measurable violations of the null energy condition,[33]: 101  and many physicists believe that the required negative energy may actually be possible due to the Casimir effect in quantum physics.[34] Although early calculations suggested that a very large amount of negative energy would be required, later calculations showed that the amount 

of negative energy can be made arbitrarily small.[35]

In 1993, Matt Visser argued that the two mouths of a wormhole with such an induced clock difference could not be brought together without inducing quantum field and gravitational effects that would either make the wormhole collapse or the two mouths repel each other.[36] Because of this, the two mouths could not be brought close enough for causality violation to take place. However, in a 1997 paper, Visser hypothesized that a complex "Roman ring" (named after Tom Roman) configuration of an N number of wormholes arranged in a symmetric polygon could still act as a time machine, although he concludes that this is more likely a flaw in classical quantum gravity theory rather than proof that causality violation is possible.[37]

Other approaches based on general relativity

Another approach involves a dense spinning cylinder usually referred to as a Tipler cylinder, a GR solution discovered by Willem Jacob van Stockum[38] in 1936 and Kornel Lanczos[39] in 1924, but not recognized as allowing closed timelike curves[40]: 21  until an analysis by Frank Tipler[41] in 1974. If a cylinder is infinitely long and spins fast enough about its long axis, then a spaceship flying around the cylinder on a spiral path could travel back in time (or forward, depending on the direction of its spiral). However, the density and speed required is so great that ordinary matter is not strong enough to construct it. A similar device might be built from a cosmic string, but none are known to exist, and it does not seem to be possible to create a new cosmic string. Physicist Ronald Mallett is attempting to recreate the conditions of a rotating black hole with ring lasers, in order to bend spacetime and allow for time travel.[42]

A more fundamental objection to time travel schemes based on rotating cylinders or cosmic strings has been put forward by Stephen Hawking, who proved a theorem showing that according to general relativity it is impossible to build a time machine of a special type (a "time machine with the compactly generated Cauchy horizon") in a region where the weak energy condition is satisfied, meaning that the region contains no matter with negative energy density (exotic matter). Solutions such as Tipler's assume cylinders of infinite length, which are easier to analyze mathematically, and although Tipler suggested that a finite cylinder might produce closed timelike curves if the rotation rate were fast enough,[40]: 169  he did not prove this. But Hawking points out that because of his theorem, "it can't be done with positive energy density everywhere! I can prove that to build a finite time machine, you need negative energy."[31]: 96  This result comes from Hawking's 1992 paper on the chronology protection conjecture, where he examines "the case that the causality violations appear in a finite region of spacetime without curvature singularities" and proves that "there will be a Cauchy horizon that is compactly generated and that in general contains one or more closed null geodesics which will be incomplete. One can define geometrical quantities that measure the Lorentz boost and area increase on going round these closed null geodesics. If the causality violation developed from a noncompact initial surface, the averaged weak energy condition must be violated on the Cauchy horizon."[29] This theorem does not rule out the possibility of time travel by means of time machines with the non-compactly generated Cauchy horizons (such as the Deutsch-Politzer time machine) or in regions which contain exotic matter, which would be used for traversable wormholes or the Alcubierre drive and black hole.

Quantum physics

No-communication theorem

When a signal is sent from one location and received at another location, then as long as the signal is moving at the speed of light or slower, the mathematics of simultaneity in the theory of relativity show that all reference frames agree that the transmission-event happened before the reception-event. When the signal travels faster than light, it is received before it is sent, in all reference frames.[43] The signal could be said to have moved backward in time. This hypothetical scenario is sometimes referred to as a tachyonic antitelephone.[44]

Quantum-mechanical phenomena such as quantum teleportation, the EPR paradox, or quantum entanglement might appear to create a mechanism that allows for faster-than-light (FTL) communication or time travel, and in fact some interpretations of quantum mechanics such as the Bohm interpretation presume that some information is being exchanged between particles instantaneously in order to maintain correlations between particles.[45] This effect was referred to as "spooky action at a distance" by Einstein.

Nevertheless, the fact that causality is preserved in quantum mechanics is a rigorous result in modern quantum field theories, and therefore modern theories do not allow for time travel or FTL communication. In any specific instance where FTL has been claimed, more detailed analysis has proven that to get a signal, some form of classical communication must also be used.[46] The no-communication theorem also gives a general proof that quantum entanglement cannot be used to transmit information faster than classical signals.

Interacting many-worlds interpretation

A variation of Hugh Everett's many-worlds interpretation (MWI) of quantum mechanics provides a resolution to the grandfather paradox that involves the time traveler arriving in a different universe than the one they came from; it's been argued that since the traveler arrives in a different universe's history and not their own history, this is not "genuine" time travel.[47] The accepted many-worlds interpretation suggests that all possible quantum events can occur in mutually exclusive histories.[48] However, some variations allow different universes to interact. This concept is most often used in science-fiction, but some physicists such as David Deutsch have suggested that a time traveler should end up in a different history than the one he started from.[49][50] On the other hand, Stephen Hawking has argued that even if the MWI is correct, we should expect each time traveler to experience a single self-consistent history, so that time travelers remain within their own world rather than traveling to a different one.[51] The physicist Allen Everett argued that Deutsch's approach "involves modifying fundamental principles of quantum mechanics; it certainly goes beyond simply adopting the MWI". Everett also argues that even if Deutsch's approach is correct, it would imply that any macroscopic object composed of multiple particles would be split apart when traveling back in time through a wormhole, with different particles emerging in different worlds.[25]

Experimental results

Certain experiments carried out give the impression of reversed causality, but fail to show it under closer examination.

The delayed choice quantum eraser experiment performed by Marlan Scully involves pairs of entangled photons that are divided into "signal photons" and "idler photons", with the signal photons emerging from one of two locations and their position later measured as in the double-slit experiment. Depending on how the idler photon is measured, the experimenter can either learn which of the two locations the signal photon emerged from or "erase" that information. Even though the signal photons can be measured before the choice has been made about the idler photons, the choice seems to retroactively determine whether or not an interference pattern is observed when one correlates measurements of idler photons to the corresponding signal photons. However, since interference can be observed only after the idler photons are measured and they are correlated with the signal photons, there is no way for experimenters to tell what choice will be made in advance just by looking at the signal photons, only by gathering classical information from the entire system; thus causality is preserved.[52]

The experiment of Lijun Wang might also show causality violation since it made it possible to send packages of waves through a bulb of caesium gas in such a way that the package appeared to exit the bulb 62 nanoseconds before its entry, but a wave package is not a single well-defined object but rather a sum of multiple waves of different frequencies (see Fourier analysis), and the package can appear to move faster than light or even backward in time even if none of the pure waves in the sum do so. This effect cannot be used to send any matter, energy, or information faster than light,[53] so this experiment is understood not to violate causality either.

The physicists Günter Nimtz and Alfons Stahlhofen, of the University of Koblenz, claim to have violated Einstein's theory of relativity by transmitting photons faster than the speed of light. They say they have conducted an experiment in which microwave photons traveled "instantaneously" between a pair of prisms that had been moved up to 3 ft (0.91 m) apart, using a phenomenon known as quantum tunneling. Nimtz told New Scientist magazine: "For the time being, this is the only violation of special relativity that I know of." However, other physicists say that this phenomenon does not allow information to be transmitted faster than light. Aephraim Steinberg, a quantum optics expert at the University of Toronto, Canada, uses the analogy of a train traveling from Chicago to New York, but dropping off train cars at each station along the way, so that the center of the train moves forward at each stop; in this way, the speed of the center of the train exceeds the speed of any of the individual cars.[54]

Previous Post
Next Post

0 comments: